Questions										
Quetion	: 01									
	a	b	a + b		a	c	a + c	ת		
Let $D_1 =$		d	c+d	and $D_2 =$	b	d	b+d	then the value of $\displaystyle rac{D_1}{D_2}$ where		
	a	b	a-b		a	c	a + b + c	D_2		
b eq 0 and	d ad	$\neq b$	c, is	I	1			1		
A. 1										
B2										
С. З										
D4										

Related Questions with Solutions

Solutions

Solution: 01

Using: $C_3 \rightarrow C_3 - (C_1 + C_2)$, in	both	determinant	$D_1 =$	$\left \begin{array}{cc}a&b\\c&d\\a&b\end{array}\right.$	$\begin{vmatrix} a+b\\c+d\\a-b\end{vmatrix}$
and $D_2 = \begin{vmatrix} a & c & a+c \\ b & d & b+d \\ a & c & a+b+c \end{vmatrix}$ $\therefore \frac{D_1}{D_2} = \frac{-2b(ad-bc)}{b(ad-bc)} = -2$					
$\therefore \frac{1}{D_2} = \frac{1}{b(ad - bc)} = -2$					

Correct Options

Answer:01 Correct Options: B